Obesity as an epidemic: predictions from mathematical models

Project: Research

Project Details

Project summary

En este trabajo, se investiga la estabilidad de dos modelos epidemiologicos de la obesidad. El primer modelo solo admite la influencia social, es decir el ambiente en que se desplazan los individuos, el segundo modelo le agrega control para reducir la obesidad y el exceso de peso.

Description

Obesity is a chronic disease that is being considered an epidemic, due to the increase in the number of people who suffer from it. At the same time, its evolution is having a dramatic impact on other diseases, such as diabetes, according to data from the main world health organizations, such as the World Health Organization (WHO) and PanAmerican Health Organization (PAHO). Taking into account this complex situation, the present study aims to develop mathematical models that simulate the temporal evolution of obesity as an epidemiological process. As a result, it is expected to visualize the evolution of obesity in our society, which will allow us to make predictions that contribute to the work carried out by disease prevention agencies.

Layman's description

La obesidad se considera como epidemia desde que los efectos de costumbres sociales inciden en la propagación de la misma. La matemática nos permite describir los diferentes escenarios de su dinámica.

Key findings

Establece las condiciones sobre los parámetros que describen su dinámica, exhibiendo diferentes escenarios.
Short titleModelo obesidad
StatusFinished
Effective start/end date1/04/1931/03/20

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 4 - Quality Education

Research areas and lines

  • Health
  • Education

Kind of research

  • Basic

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.