TY - JOUR

T1 - D-Modules and arrangements of hyperplanes

AU - LeÓn Trujillo, Francisco James

N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - Let A be a central arrangement of hyperplanes in Cn defined by the homogeneous polynomial dA. Let Dn be the Weyl algebra of rank n over C and let [Math equation] be the algebra of rational functions on the variety [math equation]. Studying the structure of P as a Dn-module we obtain a sequence of new Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of [math equation]. Finally we compute the Poincaré series of P.

AB - Let A be a central arrangement of hyperplanes in Cn defined by the homogeneous polynomial dA. Let Dn be the Weyl algebra of rank n over C and let [Math equation] be the algebra of rational functions on the variety [math equation]. Studying the structure of P as a Dn-module we obtain a sequence of new Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of [math equation]. Finally we compute the Poincaré series of P.

UR - http://www.scopus.com/inward/record.url?scp=85035284596&partnerID=8YFLogxK

U2 - 10.3836/tjm/1170348177

DO - 10.3836/tjm/1170348177

M3 - Artículo (Contribución a Revista)

AN - SCOPUS:85035284596

VL - 29

SP - 429

EP - 444

JO - Tokyo Journal of Mathematics

JF - Tokyo Journal of Mathematics

SN - 0387-3870

IS - 2

ER -