Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company

Joaquin Garcia-Arismendiz, Sandra Huertas-Zúñiga, Carlos Augusto Lizárraga-Portugal, Juan Carlos Quiroz-Flores, Yvan Jesus Garcia-Lopez

Research output: Contribution to journalArticle (Contribution to Journal)peer-review

Abstract

The use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.

Original languageEnglish
Pages (from-to)39-45
Number of pages7
JournalInternational Journal of Engineering Trends and Technology
Volume71
Issue number2
DOIs
StatePublished - Feb 2023

Keywords

  • Demand forecasting
  • Machine learning
  • Poultry company

Fingerprint

Dive into the research topics of 'Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company'. Together they form a unique fingerprint.

Cite this