A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter

Ximena Marianne Cuzcano Chavez, Victor Hugo Ayma Quirita

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

5 Citas (Scopus)

Resumen

Cyberbullying is a social problem in which bullies’ actions are more harmful than in traditional forms of bullying as they have the power to repeatedly humiliate the victim in front of an entire community through social media. Nowadays, multiple works aim at detecting acts of cyberbullying via the analysis of texts in social media publications written in one or more languages; however, few investigations target the cyberbullying detection in the Spanish language. In this work, we aim to compare four traditional supervised machine learning methods performances in detecting cyberbullying via the identification of four cyberbullying-related categories on Twitter posts written in the Peruvian Spanish language. Specifically, we trained and tested the Naive Bayes, Multinomial Logistic Regression, Support Vector Machines, and Random Forest classifiers upon a manually annotated dataset with the help of human participants. The results indicate that the best performing classifier for the cyberbullying detection task was the Support Vector Machine classifier.
Idioma originalInglés estadounidense
PublicaciónInternational Journal of Advanced Computer Science and Applications
DOI
EstadoPublicada - 1 ene. 2020
Publicado de forma externa

COAR

  • Artículo

Categoría OCDE

  • Ingeniería de sistemas y comunicaciones

Categorías Repositorio Ulima

  • Ingeniería de sistemas / Diseño y métodos

Temas Repositorio Ulima

  • Acoso moral
  • Blogs
  • Bullying
  • Ciberacoso
  • Cyberbullying

Huella

Profundice en los temas de investigación de 'A comparison of classification models to detect cyberbullying in the Peruvian Spanish language on twitter'. En conjunto forman una huella única.

Citar esto