Resumen
Nowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).
Título traducido de la contribución | Un modelo explicable de machine learning para optimizar la previsión de la demanda en CompanyDEOS |
---|---|
Idioma original | Inglés |
Título de la publicación alojada | ISSN / E-ISSN: 2169-8767: Proceedings of the International Conference on Industrial Engineering and Operations Management |
Subtítulo de la publicación alojada | IEOM Society |
Lugar de publicación | INDIA |
Editorial | IEOM Society International |
Páginas | 1 - 12 |
Número de páginas | 12 |
ISBN (versión digital) | 978-1-7923-9160-6 |
ISBN (versión impresa) | 2169-8767 (U.S. Library of Congress) |
Estado | Publicada - 16 ago. 2022 |
Palabras Clave
- Demand Forecast
- Machine Learning
- Forecast Accuracy
- Forecast Bias and Consumers Good Company
COAR
- Artículo
Categoría OCDE
- Ingeniería industrial
Categorías Repositorio Ulima
- Ingeniería industrial / Teoría
Temas Repositorio Ulima
- Forcast
- Demanda
- Machine learning
- Inteligencia artificial