Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease

Hillary Vasquez-Gonzaga, Juan Gutierrez-Cardenas

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

Resumen

Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.

Idioma originalInglés
Título de la publicación alojadaACM International Conference Proceeding Series
EditorialAssociation for Computing Machinery
Páginas98-103
Número de páginas6
ISBN (versión digital)9781450384148
ISBN (versión impresa)9781450384148
DOI
EstadoPublicada - 21 jul. 2021
Evento5th International Conference on Artificial Intelligence and Virtual Reality, AIVR 2021 - Virtual, Online, Japón
Duración: 23 jul. 202125 jul. 2021

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia5th International Conference on Artificial Intelligence and Virtual Reality, AIVR 2021
País/TerritorioJapón
CiudadVirtual, Online
Período23/07/2125/07/21

Huella

Profundice en los temas de investigación de 'Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease'. En conjunto forman una huella única.

Citar esto