TY - JOUR
T1 - D-Modules and arrangements of hyperplanes
AU - LeÓn Trujillo, Francisco James
PY - 2006/1/1
Y1 - 2006/1/1
N2 - Let A be a central arrangement of hyperplanes in Cn defined by the homogeneous polynomial dA. Let Dn be the Weyl algebra of rank n over C and let [Math equation] be the algebra of rational functions on the variety [math equation]. Studying the structure of P as a Dn-module we obtain a sequence of new Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of [math equation]. Finally we compute the Poincaré series of P.
AB - Let A be a central arrangement of hyperplanes in Cn defined by the homogeneous polynomial dA. Let Dn be the Weyl algebra of rank n over C and let [Math equation] be the algebra of rational functions on the variety [math equation]. Studying the structure of P as a Dn-module we obtain a sequence of new Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of [math equation]. Finally we compute the Poincaré series of P.
UR - http://www.scopus.com/inward/record.url?scp=85035284596&partnerID=8YFLogxK
U2 - 10.3836/tjm/1170348177
DO - 10.3836/tjm/1170348177
M3 - Artículo (Contribución a Revista)
AN - SCOPUS:85035284596
SN - 0387-3870
VL - 29
SP - 429
EP - 444
JO - Tokyo Journal of Mathematics
JF - Tokyo Journal of Mathematics
IS - 2
ER -