Humpback Whale’s Flukes Segmentation Algorithms

Andrea Castro Cabanillas, Victor Hugo Ayma Quirita

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

1 Cita (Scopus)

Resumen

Photo-identification consists of the analysis of photographs to identify cetacean individuals based on unique characteristics that each specimen of the same species exhibits. The use of this tool allows us to carry out studies about the size of its population and migratory routes by comparing catalogues. However, the number of images that make up these catalogues is large, so the manual execution of photo-identification takes considerable time. On the other hand, many of the methods proposed for the automation of this task coincide in proposing a segmentation phase to ensure that the identification algorithm takes into account only the characteristics of the cetacean and not the background. Thus, in this work, we compared four segmentation techniques from the image processing and computer vision fields to isolate whales’ flukes. We evaluated the Otsu (OTSU), Chan Vese (CV), Fully Convolutional Networks (FCN), and Pyramid Scene Parsing Network (PSP) algorithms in a subset of images from the Humpback Whale Identification Challenge dataset. The experimental results show that the FCN and PSP algorithms performed similarly and were superior to the OTSU and CV segmentation techniques.
Idioma originalInglés estadounidense
Páginas (desde-hasta)291-303
Número de páginas13
PublicaciónCommunications in Computer and Information Science
DOI
EstadoPublicada - 2020
Publicado de forma externa

COAR

  • Artículo

Categoría OCDE

  • Ingeniería de sistemas y comunicaciones

Temas Repositorio Ulima

  • Pendiente

Huella

Profundice en los temas de investigación de 'Humpback Whale’s Flukes Segmentation Algorithms'. En conjunto forman una huella única.

Citar esto