Impact of Bayesian Approach to Demand Management in Supply Chains for the Consumption of Dynamic Products

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

Resumen

Bayesian approach was applied to the management of the supply chain in a dynamic food product portfolio for a company in the retail sector. We propose a quasi-experimental method considering pre and posttest and a control group. The sample size of 93 products, out of a population of 120 products from two categories: classic sauces and gourmet sauces. R and Python programming languages were used and libraries for random sampling of the a priori distribution of the products to obtain posterior values area presented on the research. Forecast accuracy increased with the Bayesian approach by 10%. Likewise, it was possible to reduce the coverage inventory from 2 to 1.2 months and the discrepancy between the values of the Bayesian estimate with the traditional method was possible to reach a 5% error in the variation.

Idioma originalInglés
Páginas (desde-hasta)545-552
Número de páginas8
PublicaciónComputacion y Sistemas
Volumen27
N.º2
DOI
EstadoPublicada - 8 set. 2023

Huella

Profundice en los temas de investigación de 'Impact of Bayesian Approach to Demand Management in Supply Chains for the Consumption of Dynamic Products'. En conjunto forman una huella única.

Citar esto