Inventory control model based on Big Data, EOQ, ABC and forecast to increase productivity in a hardware SME

Título traducido de la contribución: Modelo de control de inventarios basado en Big Data, EOQ, ABC y previsión para aumentar la productividad en una pyme de hardware SME

Juan Carlos Quiroz-Flores, Darien Caceres-Paitan, Rocio Avila-Nolasco

Producción científica: Capítulo del libro/informe/acta de congresoArticulo (Contribución a conferencia)revisión exhaustiva

Resumen

Within the commercial sector, SMEs represent more than 90% of all companies; they are responsible for 50% of GDP and generate between 60% and 70% of employment worldwide, which is why they are critical in the Peruvian economy. However, through an exhaustive review of the literature and sectoral analysis, we concluded they have a high risk of failure in the short term due to various problems, such as poor inventory management. In Peru, the provisions for carrying out inventories usually have a ratio of between 1% and 1.4% of the total inventory stock; thus, SMEs belonging to the hardware sector more frequently present this problem that affects the profitability of their companies. For this reason, the need arises to design an inventory control model that increases the productivity of hardware SMEs. After the pilot implementation of the first component, an increase in distribution efficiency of 11% is achieved, and its effectiveness is supported by simulating the entire model, obtaining the same results.

Título traducido de la contribuciónModelo de control de inventarios basado en Big Data, EOQ, ABC y previsión para aumentar la productividad en una pyme de hardware SME
Idioma originalInglés
Título de la publicación alojadaProceedings of the 2023 14th International Conference on E-Education, E-Business, E-Management and E-Learning, IC4E 2023
EditorialAssociation for Computing Machinery
Páginas271-275
Número de páginas5
ISBN (versión digital)9798400700651
DOI
EstadoPublicada - 1 feb. 2023
Publicado de forma externa
Evento14th International Conference on E-Education, E-Business, E-Management and E-Learning, IC4E 2023 - Virtual, Online, China
Duración: 1 feb. 20234 feb. 2023

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia14th International Conference on E-Education, E-Business, E-Management and E-Learning, IC4E 2023
País/TerritorioChina
CiudadVirtual, Online
Período1/02/234/02/23

Huella

Profundice en los temas de investigación de 'Modelo de control de inventarios basado en Big Data, EOQ, ABC y previsión para aumentar la productividad en una pyme de hardware SME'. En conjunto forman una huella única.

Citar esto