Multimodal hand gesture recognition combining temporal and pose information based on CNN descriptors and histogram of cumulative magnitudes

Edwin Jonathan Escobedo Cardenas, Guillermo Camara Chavez

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

37 Citas (Scopus)

Resumen

In this paper, we present a new approach for dynamic hand gesture recognition. Our goal is to integrate spatiotemporal features extracted from multimodal data captured by the Kinect sensor. In case the skeleton data is not provided, we apply a novel skeleton estimation method to compute temporal features. Furthermore, we introduce an effective method to extract a fixed number of keyframes to reduce the processing time. To extract pose features from RGB-D data, we take advantage of two different approaches: (1) Convolutional Neural Networks and (2) Histogram of Cumulative Magnitudes. We test different integration methods to fuse the extracted spatiotemporal features to boost recognition performance in a linear SVM classifier. Extensive experiments prove the effectiveness and feasibility of the proposed framework for hand gesture recognition.

Idioma originalInglés
Número de artículo102772
PublicaciónJournal of Visual Communication and Image Representation
Volumen71
DOI
EstadoPublicada - ago. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Multimodal hand gesture recognition combining temporal and pose information based on CNN descriptors and histogram of cumulative magnitudes'. En conjunto forman una huella única.

Citar esto