One-class models for validation of miRNAs and ERBB2 gene interactions based on sequence features for breast cancer scenarios

Resultado de la investigación: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

Resumen

One challenge in miRNA–genes–diseases interaction studies is that it is challenging to find labeled data that indicate a positive or negative relationship between miRNA and genes. The use of one-class classification methods shows a promising path for validating them. We have applied two one-class classification methods, Isolation Forest and One-class SVM, to validate miRNAs interactions with the ERBB2 gene present in breast cancer scenarios using features extracted via sequence-binding. We found that the One-class SVM outperforms the Isolation Forest model, with values of sensitivity of 80.49% and a specificity of 86.49% showing results that are comparable to previous studies. Additionally, we have demonstrated that the use of features extracted from a sequence-based approach (considering miRNA and gene sequence binding characteristics) and one-class models have proven to be a feasible method for validating these genetic molecule interactions.

Idioma originalInglés
PublicaciónICT Express
DOI
EstadoPublicada - 1 mar 2021

COAR

  • Artículo

Categoría OCDE

  • Ingeniería de sistemas y comunicaciones

Categorías Repositorio Ulima

  • Ciencias / Medicina y Salud

Temas Repositorio Ulima

  • Breast cancer
  • Cáncer de mama
  • Genética molecular
  • Molecular genetics

Huella

Profundice en los temas de investigación de 'One-class models for validation of miRNAs and ERBB2 gene interactions based on sequence features for breast cancer scenarios'. En conjunto forman una huella única.

Citar esto