Optimal stability results for laminated beams with Kelvin-Voigt damping and delay

Victor Cabanillas Zannini, Leyter Potenciano-Machado, Teófanes Quispe Méndez

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

2 Citas (Scopus)

Resumen

We use semigroup theory to prove the well-posedness and get exponential and polynomial stability estimates for a delayed laminated beam system with Kelvin-Voigt damping. The Kelvin-Voigt damping only acts either on the transverse displacement or the effective rotational angle. The presence and absence of structural damping are also analyzed in both cases. The stability results follow using Gearhart-Prüss-Huang's theorem (exponential stability) and Borichev-Tomilov's theorem (polynomial stability). We also get optimal decay rates in the case of polynomial stability.

Idioma originalInglés
Número de artículo126328
PublicaciónJournal of Mathematical Analysis and Applications
Volumen514
N.º2
DOI
EstadoPublicada - 1 oct. 2022

Huella

Profundice en los temas de investigación de 'Optimal stability results for laminated beams with Kelvin-Voigt damping and delay'. En conjunto forman una huella única.

Citar esto