TY - JOUR
T1 - Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles
AU - Cerrón-Calle, Gabriel Antonio
AU - Aranda-Aguirre, Alejandro Junior
AU - Luyo, Clemente
AU - Garcia-Segura, Sergi
AU - Alarcón, Hugo
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2019/3
Y1 - 2019/3
N2 - Photoelectrocatalysis provides an excellent frame for the application of photocatalytic nanostructured materials on easy recoverable supports. This study reports the two-step synthesis of hierarchically nanostructured ZnO/Ag composite photoelectrodes. Wurtzite ZnO was selectively electronucleated as spheroidal seeds on fluor doped tin oxide substrates and nanodecorated with Ag nanoclusters under electrochemical control. Hierarchically organized nanorods were selectively chemically grown on the plane (002) perpendicular to the substrate from ZnO/Ag seeds. Solutions emulating dye effluents with the usual contents of 0.1 M of NaCl and a model azo dye (Methyl Orange) were decolorized using ZnO/Ag nanorods in different treatments. Photocatalysis attained discrete decolorizations of 8% whereas photoelectrocatalysis completely decolorized solutions after 60 min. The influence of the metal/semiconductor interface (ZnO/Ag) as introduced Schottky barrier is studied demonstrating a four-fold enhancement on decolorization kinetics respect bare ZnO nanorods. The influence of the seed growth control on the final photoelectrocatalytic response is reported to control the hierarchical organization of nanorods. This resulted in different decolorization kinetics as result of the differences on the efficient use of the delivered photons conditioned by the photoelectrode structure.
AB - Photoelectrocatalysis provides an excellent frame for the application of photocatalytic nanostructured materials on easy recoverable supports. This study reports the two-step synthesis of hierarchically nanostructured ZnO/Ag composite photoelectrodes. Wurtzite ZnO was selectively electronucleated as spheroidal seeds on fluor doped tin oxide substrates and nanodecorated with Ag nanoclusters under electrochemical control. Hierarchically organized nanorods were selectively chemically grown on the plane (002) perpendicular to the substrate from ZnO/Ag seeds. Solutions emulating dye effluents with the usual contents of 0.1 M of NaCl and a model azo dye (Methyl Orange) were decolorized using ZnO/Ag nanorods in different treatments. Photocatalysis attained discrete decolorizations of 8% whereas photoelectrocatalysis completely decolorized solutions after 60 min. The influence of the metal/semiconductor interface (ZnO/Ag) as introduced Schottky barrier is studied demonstrating a four-fold enhancement on decolorization kinetics respect bare ZnO nanorods. The influence of the seed growth control on the final photoelectrocatalytic response is reported to control the hierarchical organization of nanorods. This resulted in different decolorization kinetics as result of the differences on the efficient use of the delivered photons conditioned by the photoelectrode structure.
KW - Electrochemical water treatment
KW - Metallic/semiconductor composite photocatalysts
KW - Nano-coating
KW - Photocatalysis
KW - Photocathode
UR - http://www.scopus.com/inward/record.url?scp=85059322135&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2018.12.003
DO - 10.1016/j.chemosphere.2018.12.003
M3 - Artículo (Contribución a Revista)
C2 - 30543965
AN - SCOPUS:85059322135
SN - 0045-6535
VL - 219
SP - 296
EP - 304
JO - Chemosphere
JF - Chemosphere
ER -