Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed

Miguel Ángel Chicchón Apaza, Ronny Huerta

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

Resumen

Peru is one of the main producers of a wide variety of native potatoes in the world. Nevertheless, to achieve a competitive export of derived products is necessary to implement automation tasks in the production process. Nowadays, volume measurements of native potatoes are done manually, increasing production costs. To reduce these costs, a deep approach based on convolutional neural networks have been developed, tested, and evaluated, using a portable machine vision system to improve high-speed native potato volume estimations. The system was tested under different conditions and was able to detect volume with up to 90% of accuracy.
Idioma originalInglés estadounidense
Páginas (desde-hasta)236-249
Número de páginas14
PublicaciónCommunications in Computer and Information Science
DOI
EstadoPublicada - 2020
Publicado de forma externa

COAR

  • Artículo

Categoría OCDE

  • Informática y Ciencias de la Información

Temas Repositorio Ulima

  • Pendiente

Huella

Profundice en los temas de investigación de 'Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed'. En conjunto forman una huella única.

Citar esto