Sentiment Analysis of Facebook Comments Using Various Machine Learning Techniques

Resultado de la investigación: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva


The measure of information that is created has risen consistently and an ever increasing number of sorts of data are being put away in unstructured or semi-organized configurations. Slant Analysis is the way toward extricating emotional data from online inputs. Assumption examination empowers PCs to mechanize the exercises performed by human by settling on choices dependent on suppositions of the remarks or post in online media locales. In this paper we have evaluated the sentiments of facebook comments using five different machine learning techniques, Naïve Bayes, SVM, Random Forest, KNN and Decision tree. Evaluated these five classifiers using different performance measures like Precision , Recall and F1-score. Beneficiaries of this paper are researchers, teachers, and students who have keen interest in the topic
Idioma originalInglés
Páginas (desde-hasta)1808 - 1816
Número de páginas10
PublicaciónLINGUISTICA ANTVERPIENSIA 2021 Issue-1 ISSN: 0304-2294
EstadoPublicada - 31 mar. 2021


Profundice en los temas de investigación de 'Sentiment Analysis of Facebook Comments Using Various Machine Learning Techniques'. En conjunto forman una huella única.

Citar esto