The effect of normality and outliers on bivariate correlation coefficients in psychology: A Monte Carlo simulation

José Ventura-León, Brian Norman Peña-Calero, Andrés Burga-León

Producción científica: Contribución a una revistaArtículo (Contribución a Revista)revisión exhaustiva

4 Citas (Scopus)

Resumen

This study aims to examine the effects of the underlying population distribution (normal, non-normal) and OLs on the magnitude of Pearson, Spearman and Pearson Winzorized correlation coefficients through Monte Carlo simulation. The study is conducted using Monte Carlo simulation methodology, with sample sizes of 50, 100, 250, 250, 500 and 1000 observations. Each, underlying population correlations of 0.12, 0.20, 0.31 and 0.50 under conditions of bivariate Normality, bivariate Normality with Outliers (discordant, contaminants) and Non-normal with different values of skewness and kurtosis. The results show that outliers have a greater effect compared to the data distributions; specifically, a substantial effect occurs in Pearson and a smaller one in Spearman and Pearson Winzorized. Additionally, the outliers are shown to have an impact on the assessment of bivariate normality using Mardia’s test and problems with decisions based on skewness and kurtosis for univariate normality. Implications of the results obtained are discussed.

Idioma originalInglés
Páginas (desde-hasta)405-422
Número de páginas18
PublicaciónJournal of General Psychology
Volumen150
N.º4
Fecha en línea anticipada5 jul. 2022
DOI
EstadoPublicada - 6 jul. 2022

Huella

Profundice en los temas de investigación de 'The effect of normality and outliers on bivariate correlation coefficients in psychology: A Monte Carlo simulation'. En conjunto forman una huella única.

Citar esto